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ABSTRACT

This paper presents the mathematical foundation for wave theory modelling of acoustic pro-

pagation in leaky waveguides. In partircular, the development of the normal mode solution for the

field in a fluid layer overlying a fluid half-space is summarized in order to prov~de the basis for

advanced modelling work. The three types of propagation supported by a leaky duct - trapped

modes, leaky modes and interface waveu -- are developed along with several approximation tech-

niques. Finally, the concepts are illustrated by means of a practical problem in shallow water

acoustic transmission.
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SUMMARY

Following increased activity in underwater ocoustics research during World War II, wave theory
modeling of acoustic propagation has bacome an important part of sonar system design and evalua-
tion. Since then, wave propagation analysis of sound in the ocean has been applied to the interpreta-
tion of marine geophysical measurements and is now an established tool in underwater oil explor-
ation. This paper preoents a survey of the development of wave theory analysis for acoustic
propagation in a homogeneous layer of fluid overlying a homogeneous fluid half-space. Although
this model of the ocean is highly simplified, the analysis describes the Important features of the
sound field and forms the basis for constructing more sophisticated models of the ocean environ-
ment.

Beginning with the axially symmetric wave equation, the elementary cylindrica! wave solution
is found by separation of variables. Following the technique developed by Lamb 1. through an
integral summation of these elementary wave functions the point harmonic source is replaced by a
horizontal boundary plane. In this manner, the solution of a homogeneous differential equation
rather than an inhomogeneous equation is required, The resulting solution, a Hankel transform
integral, may be evaluated by residue theory in the complex wave nisml or plane.

In general, the form of the solution depends upon the path of the branch cu. Pekeris 2
employed a cut that yields a three part solution in which each part corresponds to a distinct type of
propagation. Thus, a finite number of real poles gives rise to a set of modes representing waves
trapped in the layer. An infinite number of modes with complex eigenvalues describe energy leakage
out of the layer and, finally, a branch line integral contains the contribution of the interface wave.
After the Pekeris cut has been examined, the solution resulting from a different branch cut path
proposed by Ewing, Jardetsky and Press 3 is developed. This cut, the EJP branch cut, eliminates the
complex modes; however, the simplicity of the previous branch line integral is lost.

Detailed investigation of the wave that travels along the interface betweer the layer and the
half-space requires a slight modification of the model. To isolate the effects of this wave, the surface
of the fluid layer is raised to infinity. The resulting integral is asymptotically evaluated by the
method of steepest descent and the, character of the interface wave is discussed. in addition, these
same approximation techniques are applied to the Pekeris branch line integral.

Once the solution techniques for the layered half-space have bean developed, they are applied
to a practical shallow ocean propagation problem. Through this application, the significance of each
type of propagation is illustrated.

Following the analysis, a summary of the types of wave propagation in this simpie ocean
model is presented. The most sign;ficant propagation component at long range consists of trapped
waves which lose no energy to the half-space below. At short range, two additional types of
propagation are evident. One of these fie!d components is the result of travelling waves that leak out
of the :ayer thereby decaying rapidly with increasing range. The other short range component, the
interface wave, is strongly excited only when a mode is near cutoff in the layer.

5
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DESCRIPTION OF THE PHYSICAL PROBLEM

In 1948, C. L. Pekeris published2 the solution to the problem of the oropagatlon of aroustic
waves in a fluid layer in contact with a fluid half-spae. This study arose as a consequence of a sries
of measurements ptrformed by Worzel and Ewing4 employing explosives in shallow ocean water.
Ewing noted that the spectrum of the energy arriving at a fixed point distant from the source was
dispersed or spread in time. In other words, each frequenc, component travelled with its own
characteristic speed. Usin~g the theoretical work of Gutenbergn and Stoneleyo on the dispersion of
Love waves, Pekeris formulated a model of the ocean environment correMsoding to those authors'
work. Since Love7 had demonstrated the existence of trapped, dispersive shear waves in an elastic
layer over an elastic half-space, Pekeris chose to analyze the equivalent problem for two fluids.

The resultant analysis successfully explained the observed dispersion and, subsequently, this
two fluid model became the foundation for most shallow water a.ustic modelling. Lqter Improve-
nments in the analysis included allowing the sound speed to vary In the layer, adding more layers and

introducing elastic properties in the lower half-space. In spite of these extensions to the theory, the
basic solution technique remains unchanged.

In this paper, we shall consider the analysis of the two fluid model in detail. Specifically, the
model consists if one homogeneous fluid layer overlying a half-space containing a second homoge-
neous fluid. As a consequence of the fluid media, shear waves do not exist in this model. However,
if elastic substances were substituted for the fluids, the solution for the shear wave field would be
conceptually identical to the compressional wave solution. Excitation of the field is by means of a
point source of harmonic w'wes located in the fluid layer. Also, the combination of a point source
and parallel, planar boundaries leads naturally to a solution exprsed in cylindrical coordinates.

Normally the ocean floor sediment possesses a higher sound speed than the ocean water itself.
Therefore, in our analysis, we will aswume that the sound speed of the fluid in the half-space is
higher than the sound speed in the layer. While there are instances of a lower sound speed in the
sediments compared to the sound speed in the overlying water, usually only the upper, highly
saturated sediment layers exhibit this behavior. For this reason we will confine our analysis to the
problem of a higher sound speed in the half-space. Additionally, the higher sound speed in the
underlying half-space permits the existence of trapped waves which di..-inate the field at long
range.

6
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ANALYSIS

Axially Symmetric Wave Equation

In order to describe a point source in a medium with parallel, planar boundaries, the wave
equation can be expressed in cylindrical coordinate& Moreover, since the analysis does not contain
any azimuthal variation, the axially symmetric form of the wave equation is sufficient, i.e.,

V2 2d I a2- (1)

where
c sound speed
r - radial distance from z axis
t - time

z - depth
- velocity potential.

Use of velocity potential reduces the equation of motion to a scalar rather than a vector equation.

The particle velocity is related to the velocity potential by,

a au av aw(2)

where
D - displacement vector

u - x component of displacement
v - y component of. displacement
w - z component of displacement.

Furthermore, the volume expansion or dilatation of a small element of fluid is given by the di-

vergence of the displacement and is related to the pressure in the fluid by,

p = -E D (3)

where

P = pressure
E = bulk modulus of fluid.

Also, the sound speed in the fluid is given by,

c2 = E (4)
P

where
p density.

7
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Taking the divergence of equation (2), we obtain,

(V • D)
at

Using equation (3) for the pressure and equation (4) for the sound speed in this last result, we
find, !

720,~(~

However, equation (1) and this result imply,

P " P (5)

Since the point source has been assumed to be harmonic, the time dependence of t0.e potential
function can be written as follows,

- ei(t b (r, z) (6)

where

w, angular frequency - 2rf

tb - harmoeiic potential.

Introducing this last assumption into the wave -quation, i.e., equation (1), we have,

The assumed time variation of equation (6) also leads to a simpler relationship between the acoustic

pressure and the potent;al function than indicated by, equaticn (5):

p - iWp 4 (8)

Applying separation of variables to the time independent differential equation (7) we may write
a range equazion,

r2 d2R + dR +-2 r2 R 0
-r2  -d r

and a depth equation,

+• ( _ 2 z = 0 (9)
dZ2  c2

where
R(r) = function of the radius, r
Z(z) = function of depth, z
y = horizontal wave number

S
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The range equation is a form of Bessel's equation and the solution, bounded as the range increases
to infinity, is given by,

R J o (,yr) (10)

where Jo(P) zero order Bessel function of the first kind. On the other hand, both solutions of
-the depth equation (9) must be retained until we consider the fluid layer problem. These solutions
are of the form,

Z = e+ igz 111)

where

•3, vcrtical wave number = (12)

Therefore, an elementary solution I- the ayial symmetric wave equation can be written by sub-
stituting the product of equations (10) and (11) for the harmonic potential, (), in equation (6).
The result of this operatiun is,

" ei~t Jo (,yr) eý_io]z (13)

Observe that the vertical wave number, g, is defined in equation (12) by a square root and, there-
fore, can be either positive or negative. In order to select the proper sign, we consider only the
exponential factors of equation (13) which can be combined as follows,

oaiei(nat +tIz) (14)

If the wave number, (3, is real, the negative sign indicates a wave travelling in the positive z direc-tior, while the positive sign refers to a wave travelling in the negative z direction. In some regions

of the medium, waves travelling in both directions are physically reasonable; however, in a region
beyond any reflectors, there is nothing to cause the wave to return toward the source. For this
case, the sign of the wave number must be selected to guarantee waves which travel away from
the source. In the event that w2 /c2 is less than 72, equation (12) produces an imaginary value for
(3 and the depth function, Z, is exponential in behavior. rhus, the sign of the exponent of equa-
tion (14) must he chosen to insure a physically reasonable decrease in the amplitude as we depart
from the source. This consideration will be discussed in greater detail in connection with the im-
proper or leaky modes of vibration.

The technique we shall employ to develop the solution to the layered problem is generally
attributed to Lamb 1 , A point source generates a spherical wave, at least before any boundary
interaction occurs, while a cylindrical coordinate system is convenient for the description of the
boundary conditions. Therefore, we shall expand a spherical wave in terms of the elementary cylin-
drical wave functions given by equation (13). This may be accomplished by the application of the
Hankel transform accor&:c, to the procedure outlined in Appendix A. The result of this dedelop-
ment, equation (A-12), i-

v eicit 00 Jo (-r) e +i]z - y(5= e7t J dy (15)
j io

9
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Initially, we shall consider the source to be located in the plane, z = 0. Following Pekeris' tech-
nique 8 , we represent the source as a set of boundary conditions rather than as an inhomogeneous
source term in the original differential equation. Thus, we require continuity of the pressure and a
discontinuity in the particle velocity across the plane, z = 0, such that the depth function assumes
the form,

Z = "

This representation of the depth function guarantees that the z dependence of the resulting po-
tential function is identical to the integral indicated in equation (15). Therefore, the general form
for the depth equation is,

Z+ = C1 e-i 3z (z >0)

Z- = C2 eil3z (z<0)

Note that the signs in the exponents have been selected to insure that the resulting waves diverge
from the source. Continuity of pressure along the plane, z = 0, yields,

C1 = C2  (16)

Further, the discontinuity in the vertical component of particle velocity can be expressed, using
equation (2), in the form,

dZ_ dZ+
d I dz = 2 (17)

0 0

Therefore, we shall introduce a point source into our analysis by placing a horizontal boundary
plane through the source and requiring that the two conditions expressed by equations (16) and
(17) be satisfied on this source plane.

Formulation of the Boundary Value Problem

Since we have replaced the point source by a boundary surface, we can formulate the prob-
lem of a fluid layer overlying a fluid halfspace2. We shall assume that the fluid layer is bounded
above (see figure 1) by air and below by a second fluid with a higher sound speed than the layer.
Since the density of air is so much lower than that of water, the fluid in the layer, we shall assume
that the pressure on the upper surface of the layer, i.e., the plane, z = 0, is equal to zero. Because
the sound speed in the layer is not equal to the sound speed in the underlying half-space, the

vertical wave number, /3, will have a different value in each region. The expressions for the wave
numbers can be written from equation (12) as,

/12 72

(18)

P22
02o w -,2

T ý2 = 2---

10
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where

c1 = sound speed in the layer

c2 = sound speed in the half-space.

In addition, the cdepth functions, equation (1 1), may be expressed in the form,

Region I Z1 = Clsin Olz + C2 cos 1 z

Region : Z2 = C3 sin 91 z - Cq.cosf3 1 Z (19)

Region I1l: Z3 = C5 e-2z + C6 el#2z

where -the regions are defined in figure 1.

Recal'ing the previous discussion concerning the sign of the exponent in equation (14), we ob-
serve that the second term in the expression for Z 3 represents waves converging on the source from
the half-space. Nothing in the half-space can produce w~ves travefling toward the source, therefore,

this second term is meaningless, or

C6 = 0 (20)

However, if -/2 is greater than w2 /c22, then, by equation (118), 02 is imaginary and must be writ-
ten as,

2= -i 2- (21)

Notice that the negative square root has been selected in order that when this last result is sub-
stituted into the third depth function expression, equation (19), the first term amplitude decreases
exponentially with increasing depth in the half-space.

In view of the previous remarks concerning the air-water interface and the representation of
the source as a boundary, we may express the conditions along the horizontal boundaries of the
three regions as follows:

1) at z = 0 the pressure is equal to zero, or,

Z 1 (0) = 0; (22)

2) at the source depth, z = d, in accordance with equations (16) and (17), we have,

Z1 (d) = Z2 (d)

for continuity of pressure, and,

dZ 1 (d) dZ2 (d)
dz dz 2

fo- the discontinuity in particle velocity; and,

12
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3) at the interface, Z = H, separating the layer from the half-space, we express the pressure

by means of equation (8),

P1 Z2 (H) = P2 Z3 (H)

for continuity of pressure, and,

dZ 2 (H) dZ 3 (H)

dz dz

for continuity of particle velocity.

Introducing the depth functions given by equations (19) into the above boundary conditions, we
obtain four equations in four unknowns. Since the first condition, equation (22), leads immedi-
ately to C2 = 0, we may write,

C1sin 3ld-C 3 sin 31d-C 4 cos 31d = 0

P1 C1 cos 31 d -. 3 1 C3 cos0 1 d++31 C4 sint3 1 d= 2-1

Pi C3 sinl31 H+pl C4 cos 31 H -p 2 C5 e-iP2H= 0

P1 C3 cosAl H - Al C4 sin 91 h + i32 C5 e-iP2H = 0

The constants are evaluated by solving this system of equations simultaneously. Thus,

S2-f t31 cos [Ii1 (H-d)] + ibP2 sin [931 (H-d)]

C1  -L 01 cos 3 1 H + ib- 2'sin' -1  H .

3 2-ysinf31 d 1 .-n1H' 3 1H-ib02 cosIj 1 HT
C3 = 01 01cos 01 H + ibIJ2 sin 01

2-j sin 01 dC4 = 031

2,ybe•P2 H sin 31 d
SC5 = P1 cos 31 H + ib92 sin 31 H

where

b = p!/p2

By substituting the values of the above constants in equations (19) and constructing potential
functions in the form of equation (13), the velocity potential for each region can be written as,

2 iwty) sin ýlz 3 1 cos [h3 1(H-d)I + ib02 sin[0l(H-d) j I
! ei F Jo0(-yr) -yL• .331 ,3cosp1 H+ibý,2 sin l H d-y

(0 < z < d) (23)

13
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sin.. Ol 0 2e~t J{Y)7•" /1 cos/3 1H + ibP32 sin/31H-' d

'P2 2 8 I~~tfc(r) siP1 [ cos [ 01(H-] + ib032 sin [P1 (H-z] d
0

(d <z < H) (24)

00 1~~/ib 2e' sin Alde "2(z-H)

f Al'y~ cos 01 H + ibo3 in~N

(H < z) (25)

To complete the analysis, we must evaluate the above integrals and, for this purpose, we will trans-
form them into complex contour integrals. We observe, however, that the expression for 4P2 is iden-
tical to the expression for 'P1 if z and d are interchanged. Thus, in order to compute the field
anywhere in the fluid layer, we need only evaluate equation (23) or equation (24). These integrals
can be eva'uated numerically when r is small and the wavelength is comparable to the layer depth,
H. In all other cases, the integrand oscillates rapidly and is difficult to integrate numerically.

Integration in the Complex Wave Number Plane

Before integrating equations (23), (24), and (25), it is useful to replace the Bessel function,
Jo, by Hankel functions 9 . The Hankel functions are related to the Bessel function as follows,

J o (-yr) =1- o(111)(Yr) + Hol2)("yr (26)

S Ho( 1 )(,yr) = -H 0 (2)(-yr) (27)

Where i

Ho() Hankel function of the first kind

Ho(2) =Hankel function of the second kind

For large values of the argument, -/r, the Hankel functions may be replaced by asymptotic approxi-
mations of the form,

44
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First, let us rewrite equation (24) through the use of equation (26),00
'2 = eiwt { He(1) 1 r)y G(01, 12) dy

0

00

+ f HO2)(yr)y G(913, 2 ) dy. (d < z < H)
0

where

sin 1l d 713I cos (P31(H-z)] + ib3 2 sin [P 1(H-z)] (30)G(tI, 02) = 1 01 cos AlH + ibP2 sinP31H ]
Relation (27) can be employed to rewrite this integral as follows,

'2 = eiwt f Ho(2)(yr)y G(01 , 02) dy (31)
-00

In order to establish the behavior of the integrand in the 7-plane, we recall that the defini-
tions of 91 and 02 from equations (18) lead to the branch points given below,

(32)

72 = 2

Further, the poles of the integrand are located at the zeros of the denominator of equation (30),

or,

131 cos 31H + ib02 sin 01 H = 0 (33)

We will show that the pole at 01 = 0 lies outside the contour used to evaluate equation (31), thus,
it contributes nothing to the solution.

Pekeris 2 proposed the contour illustrated in figure 2, in which the branch cuts extend down-ward from the branch points. Observe that as the radius of the circular arc contours, C1 through

C4 , becomes infinite, the path, A, becomes the integration path for the desired potential integral,
equation (31). We express this relationship as follows,2 f f f

=2 = 2 f= J + + 27ri (residues)n
eiwt A C12 3 4  B1  B2

15
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In the above expression the sum includes the residues of all the poles enclosed by the contour.
Since the Hankel function decays exponentially for large magnitudes of 3, in the third and fourth
quadrants as described by equation (29), the integrals over the paths C1, C2, C3 and C4 approach
zero for large radius. (A formal proof for this behavior is presented in Appendix B.) Also, from
equation (30), we notice that G(031, 02) is an even function of #1, hence, the integral along one side
of the branch cut cancels that along the other side. Thus, the solution reduces to,

2= -2ri Z residues + (34)
B1

The residues of equation (31) can be found by rewriting the intcgrznd as,

N'
where

D(0) = Cenominator of equation (30) without the 31 factor

N(T--) =remainder of the integrand.

Therefore,

(-i-'Yn) N( I
21ri(residue)n )2ri

= 2 (ri + (Y77n) N-L ,

2iri ~DD-y)
7=7

By performing the indicated operations, we find,

(residue)n = Ho(2) (Ynr) 031 sin 31d sin/31z (35)
Hýj1 - cos 31 H sin 131H - b2 sin 2 j31H tan j31 H

where

ý1 is evaluated for -f = Yn

7n is the value of y at the nth pole.

17
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Furthermore, we observe that 12 has been eliminated from this equation by using equation (33).

By replacing the Hmnkel function in equation (35) by its asvymtotic form, equation (29),
the physical significance of each residue or normal mode cln be determined. The ranee and time
dependent factors of each mode may be combined so -that the mode is asymptotically proportional
to the following expression,

(residue)n w .. tjt _ 7,nr) .( (36)

where
w

"Cn (37)

Hence, each mode represents a travelling cylindrical wave with a phase velocity, cn. In the event
that IYn is real, the wave suffers no attenuation, only the cylindrical spreading given by the r-i
factor. In other words, the wave is completely trappeo in the fluid layer. On the other hand, if -yn
is complex, the wave will be damped because of the appearance of a real exponential factor in
equation (36). We observe that the contour in figure 2 was chosetI so that the imaginary part cf
-f will always be negative, thus insuring that a real exponential factor in equation (36), if it exists,
decays with increasing range. This Explains the selection of Ho(2) in equation (31) since this func-
tion passes to zero with large negative, imaginary argument.

Proper evaluation of the uranch line integral, depends on the choice of the sign of A2 on each
side of th- branch cut. kxpressing the horizontal wave number, -y, as a complex number,

I 2 = Yr + i i

whr re

Yr = real part of -y

Yi = imaginary part of y,

we may rep.ese-it 02 by employing equation (18).

022 2 2 + yi2 - 2i ;r -i (38)
c22

Along the branch cut, Yr w-:'," 2, and ^fi rrnges from 0 to -•, therefore,I22 i2 " 2iyi - ("= < yi < 0)

This parabola is shown as contour B. in figure 3 ind A+ and A. represent the two roots of S 2
2 ,

i~e.,

A= + f72"

18A 2-



NADC-81284-30

As demonstrated in Appendix C, the real eigenvalues, 'n, corresponding to trapped modes are all
located on the real axis of the 7y-plane to the right of w/C2. Substituting 'Yi - 0 and 'r > W/c2
into equation (38), we find that this portion of the real axis in the y-plane transforms to either
the positive or negative imaginary axis of the 2-13plane since,

1322 _r 2 <0 (39)
c2

If wq recall the depth function in the half-space below thte layer, i.e., equations (19) and (20),

Z3 - C5 e~iA2z (40)

we conclude that, if 02 is imaginary, it must be negative in order to guar3ntee the physically reason-
able exponential decay with increasing depth in the half-space. Therefore, we select the region be-
low contours A- and A+ in figure 3 as the branch for 02- By substituting the appropriate valuss
for -Yr and Ti into equation (38), we can show that the path !n the '-fplane, labelled number 2 in
figure 3, transforms to the positive real axis of the (02 plane. The transformation between the
f-plane and the 32-Plane is illustrated in figure 3.

On the basis of figure 3, we can summarize the behavior of P2 in the y plane as follows:

R&gion I: 932r > 0, 42i > 0 {use positive root for 02) (41)

Region II: 0•2r < 0, 032i < 0 (use negative root for ,2) (42)

Region III: 92r > 0, 032i < 0 (43)

where

02r - real part Of 012

032i - imaginary part Of 92

Now that we have determined which value of 62 to select on each side of the branch cut, the
branch line integral can be specified. As shown in figure 2, the path passes up along the !eft side
of the cut and down along the right, so that the integral in equation (34) becomes,

c2 c2)

f" Ho (2) (-yr) -, G W(1 1,2) dH 0 + H H(2) (-yr) -yG (A1,- 2) dyt

c2 c2

c2

f Ho(2) (yr) y [G (4 42 - G (4 1-2 d-y

c2

19
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I~/ r Ipon a

FI G URE 3. - Correspondence between -f and 0-planes for the Pekeris cut.
B 1 is represented as 32 in the ?3-plane and A+ and A-. represent

the two roots of this quantity
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By substituting the expression for G (f3, P2). equation (30), into this last result and simplifying, the
branch line integral can be written as,

c2-2ib CH 0  (1r)- sin O ld sin 01 z dy (44)

H 01 -cosl 1 H sin 1 H-b 2 sinflHtan 1 H

-no (r) 1 sin 131d sin PI

-2ib c2H 01?) (-yrh -10 i dsnP d-y (45)W-.- if 12 co%2 pjH +b2• p22 sin2 P1H d 45

According to Appendix C, the roots of the characteristic equation, equation (33), eithcr lie
along the real axis between w/c 2 and w/c1 or in region I of the '-plane shown in figure 3. The
former set of solutions is a finite set and represents waves with energy trapped in the layer while
the latter set of solutions is infinite. Each mode of this infinite set spreads cylindrically, i.e., its
amplitude varies as r0. as do the trapped modes. However, these modes, which are not trapped,
also decay exponentially with increasing range because the eigenv~lue, 7 n, has a negative imaginary
part. These modes corresponding to complex eigenvalues are called "leaky" or "improper" modes.
Such modes are leaky because the energy is not completely trapped in the layer and improper
because of their behavior as depth in the half-space increases.

Consider the vertical wave number, 02, in region I of the y-plane, the region in which these
improper modes are found. In this region, both the real and imaginary parts of 02 are positive as
expressed by equation (41). Hence, the depth function in the half-space, i.e., equation (40), in
combination with the time dependence is of the form,

i~t e-i2z = ei(wt-02rz) eý2izZ3 = e

This last expression describes a wave diverging from the source as it should; however, the last
factor indicates that it increases exponentially with depth. Such unphysical behavior for a mode
leads to its being termed an improper mode. It has been found that the sum of these improper
modes is well behaved at large depths. Indeed, useful results have been obtained for the field in
the layer by adding these modes and the trapped modes 10 , 11

As wP have observed, the improper modes are found to lie in region I of the -/plane and ex-
amination of figure 3 suggests that this region could be eliminated by re-routing the branch cut.
If the cut is taken from w/c 2 along the real axis to the origin and then down the negative imaginary
axis to infinity, the contour, A+, in the •32-plane would lie along the positive real axis and A-
would coincide with the negative real axis. As a result, region I disaopears and the only modes
re-naining corresoond to trapped modes with poles on the real axis.

21
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This cut was proposed by Ewing, Jardetzky and Press3 and is called the EJP cut in this paper
while the cut considered previously is called the Pekeris cut. The branch line integral is identical
in form to the Pekeris branch line integral, equation (44); however, the limits of integration are
modified to follow the EJP cut. Thus, the EJP branch line integral is given by,

AtL

f -2ib J (2) P2 $sin "fdsi 1 z

EJ -if H 1312 co,2 PI H + j2 022 d7 (46)

The EJP cut is shown as path 2 in figure 3. Although the prospect of not having to locate and
evaluate complex eigenvalues is attractive, the branch line integral for the UiP cut is much more
difficult to evaluate numerically than the Pekeris branch line integral, particularly at high fre-
quencies 12. This is true because the Hankel function oscillates much more rapidly when the real
part of its argument is varied, as in the final segment of the EJP cut along the real axis, than when
the imaginary part is changed.

Reflection of a Spherical Wave

We have completed the solution to the problem of a layer overlying a half-space, but we

have not interpreted the branch line integral, equation (44), physically. In order to gain some
insight into the interaction of waves with the interface, it is necessary to simplify the problern
somewhat. To accomplish this purpose, we shall let the layer thickness become infinite. In this
case, the problern reduces to one of twu. half-spaces and, as a result, the complications of waves
returning from surface reflections are avoided.

Anoth,..- benefit of this simplification is that the lower half-space need no longer be homogene-
ous provided that it can be :harecterized by a plane wave reflection coefficient. We gain this gen-
eralization by expanding the spherical wave from a point source in terms of plane waves rather
than in terms of cylindrical waves. From the derivation in Appendix D, a spherical wave can be
expressed as equation (D-6) which is repeated below,

eikR 1 i Q dex dily (47)
R Fir JJ ip3 dx~

where

K, vector wave number = yxi + yyj + 3k

R, slant range = Vx 2 + -y 2 + z2

4, vector range = xi + yj + zk

x, y, z u position coordinates of a point

-.X - Yy. = plane wave number components

22
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In equation (47), the factor e-iK 61 denotes a plane wave with the direction of the normal to
the wave front given by the K vector. Also, since the sc.urce is at the origin, the plane wave has
travelled through the distance given by R. For a spherical wave, the radial direction vector is always
perpendicular to the wave front, i.e., parallel to K, hence, the dot product is unnecessary in the
exponent of the left hand side of equation (47).

Employing the geometry of figure 4, the field at P can be written in terms of the direct and
ref lected paths,

00

1 IeiK~
= dff ig dyx dyy

-00

(48)
00

ffiK (612a + 6R2b)
+ e i3 V() dx d'yy

~00
where

V() = plane wave reflection coefficient

S = grazing angle

The reflection coefficient has been introdLc"ed in the second term of equation (48) in order to
account for the reflection of the plane wave at the boundary between the half-spaces. By expand-
ing the dot products, we can rewrite the two terms of equation (48) as follows,

00

1 jfe-i(xX + 7y Y) e-io(zd) dyx dyy (49)

e-3 V(•)x d3Y'xy d3i (50)

where

(b1 =potential for the direct path

P2= potential for the reflected path

Ingard 13 used this representation to summarize Weyl's work on the reflectivity of spherical waves;
however, he adopted the angle of incidence to express the reflection coefficient and, subsequently,
to transform the integral. In the work to follow, we will adopt the more common convention in
underwater acoustics and employ the grazing angle, a.

In spite of the appearance of figure 4, the function (P2 includes the entire field resulting from
the interaction of '.ie incident wave with the lower half-space - not only the simple reflected wave.
Inhomogeneous waves, for which (01 is imaginary, are discussed in Appendix D and it is shown
there that they are boundary waves travelling along the interface between the media. These waves
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are shown below to be included in equation (50). In order to investigate the behavior of this com-
posite field, we will transform equation (50) by employing the geometry of the wave number
vector. Figure 5 illustrates the relationship between the wave number, k, and the horizontal and
vertical wave numbers, y and 0, and the grazing angle a. Observe in equation (47) that k describes
the basic spherical wave we are attempting to reproduce and, therefore, is a constant. Thus, the
extension of , to infinity implies that 3 and a must become complex.

Following the same procedure illustrated in Appendix D to obtain equation (D-7), we trans-
form equation (50) to an integration over -y,

corspnin (r e-iI31(z+d)

4)2 = J Jo (,yr) V()- (1

In Appendix E, the solution for a homogeneous lower half-space is derived by solving the
corresponding boundary value problem. If we compare equation (E-4) to equation (51), we ob-
serve that the two results are equivalent if the reflection coefficient is defined as,

V = 01 - b02 (52)931 + b032

This last result is, in fact, the plane wave reflection coefficient for the problem of two homogene-
ous half-spaces. A more familiar form of this result can be written in terms of the grazing angle ca
if we observe that, from figure 5,

,y = kcosa = -it cos a

01 = ksin a = Cl since

Introducing these last results and the definitions of 31 and 92 given in equations (18) into equa-
tion (52), the reflection coefficient expression becomes,

sin cr - b - cos2 a

V(a) = (54)

sin a+b c12 -cos 2 ac22

This last result is equivalent to that given by, for example, Clay and Medwin 14 .

Equation (51) can now be transformed to the ca-plane (the complex grazing angle plane)
by writing the equivalent differential element from equation (53),

dy = -ksina d ce (55)
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To locate the path of integration in the a-plane, we write,

3 = kcos (a' +ia")
(56)

= k (cos a' cosh c" - i sin a' sinh a"]

where

a' = real part of a

a" = imaginary part of a

Thus, it may be shown that,

-t = -o- fora' = r and " = _0o

-Y = 0 for ' = 7r/2 and a" = 0

-Y = +ofor a' = 0anda" = ±oo

In order to insure that there is an exponential decay in the wave with increasing depth below the
source, the imaginary part of 01 must be negative; thus, from equations (53) we write,

= k sin (a' + ia") ((57)

- k [sin oa' cosh a" + i cos a' sinh a"]

Therefore, when a' = 7r, a" must be positive arid, if a' = 0, o" must be negative. Consequently,
the transformed path of integration starts at a = 7r + ioo, moves down to at ir, along the real
axis to a = 0, and ends at a - i o. This path is the reverse of path C in figure 6.

Applying these results to equation (51), the field integral becomes,

-i0ik f
ik J Ho12) (kr cos a) e-ik (z+d) sin a V(a) cos a d at

7r + 0

where

Ho (2) Hankel function of the second kind.

Since the limits of integration can be interchanged, we obtain,

*k fH 0 (2
= -(2) (kr cos a) e-ik(z+d) sin a V(a) ccs a d c4 (58)

C .

wh ere

C contour shown in figure 6.
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C

X 7i/
/ ir

x 0 - ' 77*-•

"c"

saddle Po;n'

FIGURE 6. - Configuration of the complex giazing angle plane depicting the original
integration contour C, the path of steepest descent, S, through the saddle point

a., and the two branch lines, B and B-
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Asymptotic Expression for the Reflected Field

Equation (58) is the exact solution for the reflected field of figure 4; however, numerical
evaluation of this expression is difficult because the integrand may oscillate very rapidly. Hence,
we will consider an asymptotic approximation for the solution valid for large values of kr. This
approximation is also useful for providing insight into the physical significance of the reflected
field. In the following analysis, we will use procedures developed for electromagnetic wave piopa-
gation 15 , 16, although our solution will be written in terms of the grazing angle rather than the
angle of incidence.

First, the Hankel function is replaced by its asymptotic approximation and, in this case, we
include the second term in the series expansion 9 , hence,

Ho(211(kr 
cos 

a) 
-- 1e1 

9

H0
4 2 ) (kr cos) co = * 7rkr cos ai( 8ikr cosa ) (59)

Combining the exponential factor indicated above with the exponential in equation (58), we ob-
tain an exponential of the form,

e-ik [r cos a + (z + d) sin a]

If we designate the length of path 2 in figure 4, i.e., the sum of R2a and R2b, by R and let the
grazing angle shown be %o, the above factor becomes,

e-ikR cos (a-<ao) (60)

I ntrodu.ing these changes into equation (58), we obtain,

(2 = e 2k 1- 8ikr cosa e -ikRc(s(a-o) V() cosada (61)
C

Next, we examine the characteristics of the integrand in the complex a-plane. There are three
singularities of importance:

a) the two branch points of V(a), or, equation (54), given by,

-2 cos2  = 0

b) the poles of the function V(a), and,

c) the branch point located at

N/Cs = 0

Initially, let us consider the branch points of V(a),

cos2 a -2 2 2 C 2  = 0 (62)

c2 2  c22
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These branch points and their associated branch cuts can be treated in the manner employed in
the layered half-space problem. Referring to figure 3, we use the path equivalent of the EJP cut,
i.e., the positive real axis in the 32-olace. Transformation of the EJP cut from the y-plane to the
=-plane yields path B in figure 6. Since there are two roots, aBP and aBP-, to equation (62), a sec-r ond branch cut must exist and it is shown as B- in figure 6. Further, the branch is selected so that
the imaginary part of cl132/wJ is negative; thus, the field decays with depth below the interface.

The poles of the function V(a) are determined by the zeroes of the denominator of equa-
tion (54), or, 2J

sin 2 a = b2  1-(63[c22 o2=(3

where

O V = + id

a' = real part ofao

t" = imaginary part of a

There are three roots to this last equation: two real roots, a1 and a2 , and one imaginary root,
a3 , as illustrated in figure 6. All of the poles resulting from these roots lie outside of the region
defined by the contour integration; therefore, they can be ignored. Also, the branch point of
/cos = located at a = 7r/2 cin be avoided by drawing the contour C slightly above the point

a- ,!2.

Since the behavior of the integrand of equation (61) has been established, we apply the meth-
.. of steepest descent (or saddle point method) to approximate the integral solution. This method
S'iscussed in detail in Appendix F. Basically, the technique involves locati,,g the point at w;,Ih

Sexponential of the integrand is stationary and then adjusting the path through this point so
t. - the function decreases rapidly in magnitude on either side of the stationary point.

Consider an integral of the following form,

fG() ePf(c)da

Comparing this integral with equation (61), we conclude that,

p = kR (64)

f(u) = -i cos (a -ao) (65)

-- (a V (a) /Cos C, (66)
G(• = F74 k 8ikr cosa
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For large values of p, the magnitude of the exponential will be very sensitive to changes in f(ci).
Thus, proceeding as in Appendix F, the stationary point or saddle point of our function is located
by utilizing equation (F-5) as follows,

f " isin(o- 0o) - 0

From this last result, we find that the stationary point is given by,

tk 4" COO

Hence, the major contribution of the reflected field comes from those plane waves which travel
close to path R2 in figure 4. Also, as discussed in Appendix F, tne path of most rapid decrease in
the real part of f(a) is the path of constant imaginary part; therefore, the phase is constant along
this path. For this problem then, we will deform the contour of integration so that we are adding
those plane waves that are close to the specularly reflected path and that arrive with identical
phase.

From equation (F-6), the path of steepest descent is given by,

f(C) = f(io) - s2

This last result can be written, employing equation (65), as,

uos (a- co) = 1 - is2  (67)

The path described by equation (67) is shown in figure 6 as path S. As long as the saddle point
oto lies to the right of the branch point aBP, the path crosses the branch cut B twice so that both
ends of S lie on the proper branch. In this case, the original contour C can be deformed into S
without any difficulty.

Physically, OBP represents the critical angle of plane wave reflection theory. For grazing angles
less than QBP, the radical in equation (54) becomes imaginary and the magnitude of V(at) is unity;
thus, the plane wave is totally reflected. If the grazing angle of the plane wave is greater than
aBP, the wave is only partially reflected. In the following analysis, the asymptotic solution to
equation (61) will completely describe the field only if the angle shown in figure 4 is greater than
the critical angle. As point P in figure 4 moves outward, the angle will pass through the critical
angle and, from this point on, another term will appear in the solution. This term, a result of the
branch line integral associated with aBP, will be considered later.

The asymptotic solution to equation (61) can be written by substituting equations (64
(65) and (66) into equations (F-10), (F-14) and (F-15). Neglecting terms of the order, 1/(kr)ý,
the reflected field is given by,

eP2 = { V(a°) + k [V"(-o) - V' (a) tan cll) (68)

where

kR >> 1.
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If we had only considered the first term, we would have obtained the field resulting from a single
plane wave following path 2 in figure 4. Indeed, for large kR, the second term of equation (68)
can be ignored and the problem can be treated by applying the plane wave reflection coefficient
directly to the spherical wave incident at the boundary between the media. The second term of
the solution provides a correction for the plane wave reflection coefficient when the incident
wave is spherical. Finally, the validity of equation (68) depends not only on kR being large, but
also on V(ot) being a slowly varying function. In the derivation of the method of steepest descent,
it was assumed that the exponential factor, equation (60), decreased in magnitude so rapidly on
either side of the saddle point that the remainder of the integrand given by equation (66) could
be adequately represented by the first few terms of its Taylor series As can be shown from equa-
tion (54), the reflection coefficient V(c) varies rapidly in the vicinity of the critical angle; hence,
equation (68) is not accurate for •o approximately equal to oBP, the critical angle.

Lateral Wave

When the grazing angle ao of figure 4 is less than the critical angle CXBp, the path of steepest
descent no longer crosses the branch cut twice. Consequently, a circuit around the branch cut
must be added to insure that the path closes on the same branch as the original contour. Figure 7
illustrates this modified contour. The branch line integral introduced into the solution corresponds
to another form of energy propagation which we will now consider.

Only the reflection coefficient V(ct) changes value in crossing the branch cut; thus, the ex-
ponential factor of the branch line integrand is identical to that in equation (61). By introducing
a modification to the method of steepest descent, we can evaluate this branch line integral asymp-
totically. Brekhovskikh 16 outlined this modification and obtained a complete solution; however,
we will only follow his work to the point of locating the path of descent. Once the proper path
has been found, it will be transformed back to the v-plane so that the results can be applied to
the layered half-space problem. Since the branch cut must originate from the branch point, we are
not able to deform the path as freely as in the case of contour C, figure 7. We can, however, locate
the path leading away from aBp over which the function decreases most rapidly. Under these
circumstances, most of the contribution to the integral comes from the immediate vicinity of
oLBp and we can approximate the integrand by a series similar to that derived in Appendix F. In
the saddle point method, we locate the saddle of the function, then descend along the steepest
path into the valleys on either side of the saddle. In the present case, our starting point is located
somewhere on the ridge flank or valley wall and we descend along the steepest path into the nearest
valley.

The real part ot f(li) decreases most rapidly along the desired path; therefore, as shown in
Appendix F, the imaginary part is constant. As a result, the path of descent is given by,

f(a) = f(iBP) -" s (O<s<oo) (69)

We can show that this path leaves oBP with a vertical slope and approaches the upper leg of S
(see÷ figure 7) asymptotically. Figure 8 illustrates the branch line integral path BLI and the steepest
descent deformation Ba after transformation to the complex -y-plane. Also shown is the transformed
saddle point yo with its associated descent path S.
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FIGURE 7. - Modification of path of steepest descent, S, for co <cBp.
Inclusion of branch line integral, BLI, restores upper end of S to

same branch as original contour, C
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Using equations (51) and (52), we can express the branch line integral over the path BLI
-3 follows,

$5 ~ " J HO( 2 ) (,r) d• F 120b2  tdy

Note that in the above integral the usual replacement of Jo by Ho12) has been performed. From
figures 6 and 7. we note that no poles are crossed in the process of deforming the branch cut
so that the solution can be written directly by changing the path,

-B - 2bi 5/HO2 ) (-yr) e-iPl (Z+d) P2 2]y 7d1

If the asymptotic form for the Hankel function is used, the above expression reduces to,

i7 T F2 -i -r +Pi(z+ d)J ~
-B 2ibe l ;7_ fe'i• L/9b (z +-Y d (70)

"Ba : -

Since the descent path, B&. is initially vertical downward and only the beginning of the path
contributes significantly to the integral, we can assume that the real part of y does not change.
In other words, -y is given by,

- = k2 (1 - ix) (71)

where x is small in the region of interest.

In view of this last conclusion, we write the following approximations,

72 k2
2 (1-2ix)

02= k22 k2-72 z k2 V/M1i

01k,--2 kj 1  2 (72)
C2

2

'•12 - b2•22 g- 12

dy - - ik2 dx
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After substituting these approximations into equation (70) and transforming the integral to an
integration over x 17, the field can be written as,

"4ibk2 5 / 2 *1_i [k2 r +P31 (z+d)] /fjV... k2rx dx

The integration may now be performed and the final result is,

"2ibk 2  -i[k2r + 04 jz + d)(4)B /31r-•(73)

1
2r2

where P31 is given by equations (72).

In order to establish the physical significance of the solution, consider the exponential factor
of equation (73). By employing the definition of the critical angle, equation (62), and the geom-
etry of figure 9, we can write equation (73) in the following form,

-2ibk 2  -ik 2 (r- R2 cOsaBP) eiklR2e) (74)

The second exponential factor indicates that the energy associated with the wave travels along the
path with grazing angle, cBP, regardless of the range. Moreover, as shown in figure 9, the two legs
of this path, the incident and reflected segments, are separated by a horizontal portion equal to
the range excess over the minimum range, R2 cos QBP. Since the wave number is k2 for this hori-
zontal segment, the speed of propagation along the interface is c2. Not only is the path of this
wave significantly different from the direct and ipecularly reflected paths (refer to figure 4):
according to equation (74) the amplitude decreases as r-2. We observe that this is a much more
rapid decrease than the r- 1 decrease associated with spherical spreading. Furthermore, the shape
of the wavefront is a straight line in the rz space, i.e., a conic section in cylindrical space, as is seen
by allowing the exponent of equation (73) to assume a constant value,

k2 rc22 + + d) = const.

The line of constant phase (the wavefront) is given by,

z + const.tan UBP

In contrast, we note that, from equation (68), the wavefront of the reflected wave (and, incidental-

ly, the direct wave) is a circle,

R2 = r 2 + (z +d) 2 = const.

This, of course, would be the section of a sphere in three dimensions.
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Layered Half-Space Branch Line Integral

Now that we have developed the concept of a lateral wave, we can return to the finite layer
problem and discuss the original branch line integral, equation (44). Unfortunately, the problem
is more complex and, thus, we will be forced to introduce some additional assumptions.

By employing the asymptotic form of the Hankel function, equation (44) can be simplified
as follows,

CA.)

c2

(D 13 t/2Wr el~; e-irf [G(01,932) - G(031, - 92)] d-y (75)

This last result may appear to be in a form suitable for the method of steepest descent; however,
there are additional exponential terms to be considered. These additional terms arise from the
function G in equation (75). If we replace the sine and cosine functions in equation (30), the equa-
tion that defines G, with complex exponentials and perform the indicated operations we can
write,

G( 1,1 e1 (z - d) ei/l (z + d)G(01/2) e ei3

-V [e-i/ (2H + z - d) _e-i 31 (2H + z + d) _e- il (2H - z - d) + e- i/1 (2H - z + d)]

+V2  ei01 (4H +z-d) - e- i'1 (4H+z+d) - e-i/3 1 (4H-z -d) + e-i'1 (4H-z+d

-V 3 [ ] +...

where V = reflection coefficient defined by equation (52).

In the same manner, we discover that the expression for G(031, -032) is identical with equation
(76) with the exception that 01 is replaced by -'31.

Before proceeding further, it is interesting to examine the nature of the terms in equation
(76). Each of the terms, when combined with the exponential from the asymptotic form of the
Hankel function assumes the following form,

e-i K .RL

where

K, vector wave number = yr + /1 k

(1, position vector = rr t (2nH ± z d) k

After integration over the horizontal wave number 7, this expression corresponds to the field of
a spherical wave (see Appendix A) at the point given by the position vector (ii. Figure 10 illustrates
the correspojndence of each term to a spherical wave at an image receiver located so as to produce
the required number of surface and bottom reflections. Thus, we have shown that equation (24),
the general field solution in the layer, can be thought of as a superposition of spherical waves
travelling along the various direct and reflected paths from source to observation point 2 .
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Strictly speaking, in order to apply the method of steepest descent to equation (75), we
must consider a separate path for each term in equation (76) and its counterpart for G(031, - 02).
Instead of following such a difficult course, we introduce three assumptions to insure that the
problem is tractable. First, consider the leakage of waves into the half-space for grazing angles
greater than the critical angle to be significant. This appears to be a reasonable assumption in many
cases and allows the neglect of terms multiplied by powers of the reflection coefficient V. Further,
we shall assume that the range is much greater than the laigest value of 2nH + z + d in the remaining
terms so that the variation of the exponential factor in equation (75) dominates the integrand.
Under these restrictions, we shall consider the path of steepest descent required by the function,

e-iTyr

In this case, the descent path is the Pekeris branch line path and, therefore, the approximations
given by equations (72) can be used. Notice that this path is valid for either the EJP branch line
integral or the Pekeris integral; however, in order to deform the EJP contour into the descent
path, all of the poles in the Pekeris solution that are crossed must be accounted for as residues.

Finally, there is one more restriction on the approximation we are about to make. The method
"of steepest descent, in its present form, breaks down when a pole is located near the saddle point
or the descent point. This circumstance is a possibility in the layered half-space problem. Whenever
a mode approaches cut-off, i.e., the transition between trapped and leaky waves, the pole associ-
ated with the mode approaches the branch point. Cutoff is determined by the characteristic equa-
tion for the poles, equation (33), which can be written,

tan 01 H =

b1 1 2
Aa 2  c1 2 c2

2

At the branch point y =wic2, and, consequently, the right side of the above equation becomes
infinite. In order for a root to exist at the branch point, the left side must also be infinite or,

c1H 1 2 _= (2n-1)ir (77)

7 = / c 2 - c 2 2  2

This is the condition for cutoff of the nth mode. We must not use the approximation developed
below when equation (77) is satisfied for any positive integer value of n.

Now that we have outlined the restrictions in our theory, we may apply the approximations
indicated in equations (72) to determine the value of equation (75). In addition to equations (72),
we observe that,

t~2 co 4iHb2 2  01 iH =J12 c Hi 0
0,12 cos20!H + b222 sin 2 s H (78)

provided that cos •1H 0, since 32 is much less than 11. This condition is equivalent to requiring

that no modes are near cutoff.
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Substituting the above approximation, equation (78), and equations (72) in equation (75),
we can show that,

4ibk 2
3 sin 31d sin 01 z e.ik2 r 0 k2xr(D qB zz- f vv e-kx dx

V/T2 g /12 c 0s2 t3H V/ '7r '

As in the derivation of equation (73), this integral can be evaluated; hence, the asymptotic field
resulting from the branch line integral is,

2ibk 2 sin 31d sin 01 z e-ik2 r (79)
r2 31

2 cos2 031H

In this last result, 01 is evaluated at y = w/c2.

As in the case of the lateral wave in the two half-space problem, this field exhibits a spreading
loss of 1/r2. Also, by examining the exponent of equation (79), we see that the phase velocitq of
this wave is equal to the sound speed in the half-space below the layer. Since we have assumed that
the horizontal range is considerably larger than the water depth, the two legs of the lateral wave's
path away from the interface are so small that their effects are not evident in equation (79).

Application to a Shallow Water Waveguide

In order to illustrate the behavior of the field in a fluid layer, a specific example will be con-
sidered. The following values were selected for the parameters in figure 1 in an attempt to describe
a region of shallow water over a fluid sediment of moderate reflectivity:

b = Pl/P2 = 0.5
C1  = 1500 m/sec
C2  = 1600 m/sec
d = 20m
H = 50m
z = 40m

Below cutoff for the first mode (21.55 Hz) the field was determined by numerical integration
of equation (24). For higher frequencies, poles appear on the real axis, representing trapped modes,
and the integration becomes extremely difficult. Hence, above cutoff, the field was evaluated by
summing the residues of the real poles and numerically integrating the EJP branch line integral
given by equation (46). In this manner, it was not necessary to locate the complex poles. Finally,
the lateral wave field was computed separately by numerical integration of the Pekeris branch line
integral, equation (44). Each of the numerical integration computer programs was patterned after
the algorithm described by Bucker1 2 which is a Guass-quadrature scheme with adaptive step size.

Figures 11, 12 and 13 illustrate the cthanges in the field as the source frequency is increased.
Propagation loss, plotted as a function of range, refers to the ratio of intensity (proportional to
pressure squared) at the observation point to the intensity one meter from the source. In decibel
form this ratio is simply 20 Iog/+h/ since the intensity at one meter was defined as unity by the
left side of equation (A-5).
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In figure 11, the 5 Hz curve shows a rapid attenuation of the field with range. This behavior
is typical of a waveguide well below cutoff. As the frequency increases, the curves remain smooth
and indicate that the field decays less rapidly. Above cutoff, that is, above 21-.55 Hz, the appear-
ance of the first trapped mode induces oscillations as shown by the 25 Hz curve. Referring to
figures 12 and 13, we observe that the oscillations retain a similar form from 25 Hz to 60 Hz.
Effects of the second trapped mode, which appears above 64.66 Hz, are cle&,ly evident as dis-
tortions in the oscillaiions of the 75 Hz curve. Generally, as more trapped modes appear, the
shape of the curve becomes increasingly complex.

Another significant component of the field is the contribution of the lateral wave as given
by the Pekeris branch line integral. This component is plotted in figures 14 and 15 illustrating the
smooth decay with range at all frequencies. Of particular importance are the curves at 20 Hz and
65 Hz which are substantially higher in level than any of the other curves. Since the frequencies
associated with these curves correspond roughly to the cutoff frequencies of the first and secondr modes, we conclude that the lateral wave is strongly excited when a mode is near cutoff. In fact,
at 20 Hz, the lateral wave is the predominant field component (compare figures 11 and 14) and
this explains the relatively slow decay with range although, at 20 Hz, the layer supports no trapped
modes.

This behavior of the lateral wave when a mode is near cutoff is reasonable both mathematical-
ly and physically. Mathematically, a mode near cutoff implies that a pole is close to the starting
point of the branch line; therefore, the value of the integral is large. Incidentally, the proximity
of the pole to k2 renders the asymptotic solution, equation (79), invalid. In fact, the approxi-
mate integration considerably overestimates the field in this case. Physically, a pole near k2 reflects
the existence of a mode wh-se wavefront normal is close to the critical angle at the interface.
From our analysis of the two half-space problem and figure 9, we observe that this is the preferred

One final note concerning the data presented in figures 11 through 15 is necessary. Numerical

integration of the Pekeris and EJP branch line integrals was performed by employing the asymp-
totic form of the Hankel function. As a consequence, the curves have been constructed so that
the argument, yr, of each Hankel function is at least 27r. Below cutoff, the computation utilized a
polynomial approximation to the Bessel function valid over the entire range of the Bessel function
argument.
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CONCLUSIONS

The boundary value problem for a point harmonic source in a layer of fluid over a fluid
half-spece has been solved by superposition of elementary wave functions and contour integration
in the complex wave number plane. Three different forms of this solution have been determined.
Specifically, these are: (1) the basic superposition integral given by equations (23) through (25); (2)
a finite sum of real mode residues, equation (35), and the EJP branch line integral given by equation
(46); and (3) a finite sum of real modes, an infinite sum of complex modes and the Pekeris branch
line integral, equation (45). All of these solutions are mathematically equivalent; however, each has
its own particular advantages.

Direct numerical integration of the superposition integral is straightforward provided that the
layer is beow cutoff. In the event that trapped modes exist, there will be poles on the real axis and,
as the frequency increases, the integrand becomes increasingly oscillati...y. As a result, the numerical
integration becomes difficult. On the other hanid, poles on the real axis are simple to locate by
means of the characteristic equation. equation (33); hence, their contribution to the field is simple
to compute. In this case, the EJP integral must also be evaluated and this evaluation is frequently
difficult because the integrand can oscillate rapidly. However, we observe that the envelope of these
oscillations tends to have a finite number of large but narrow peaks and these may be individually
approximated by analytical functions and integrated. Known as virtual modes or resonances the
contributions from these peaks correspond in behavior to the lower order leaky modes 18,16,20.
The concept of virtual modes represents an approximation to the EJP integral and yields a physical
interpretation in terms of leaky modes of propagation.

In comparison with the EJP integral, the Pekeris branch line integral is simple to evaluate
numerically 12 . An increase in complexity arises, however, as complex eigenvalues must be located
in order to complete the solution. Further, the fact that each of these complex modes becomes
infinite with infinite depth is difficult to understand althiough the field is computationally correct
10. Leaky modes which behave improperly for one coordinate are adopted in other fields such as
plate vibration 21 and electromagnetic radiation 22 and the series frequently converges rapidly. In
addition, the Pekeris branch line integral provides a distinct descriptive device for the lateral wave -I a specific physical mechanism,

In the course of this investigation, three distinct types of propagating waves have been isolated.
First, there are a finite, sometimes zero, number of trapped modes. These modes are, at long range,
traveling cylindrical waves which transmit no energy into the half-space below but, instead, spread
cylindrically in the layer. Because the leaky modes and the interface wave decay more rapidly with
range, the field in the layer at long range may be adequately represented by the trapped modes
3 lone.

At shorter ranges, the next wave type, the leaky mode, becomes important. These modes are
such that their wavefront normjgs strike the interface with a grazing angle greater than the critical
angle. Consequently, energy is transmitted to the half-space. Indeed, the greater the angle, i.e., the
higher the mode number. the more energy is transmitted downward through the interface. Except
at very short range, a manageable number of these modes is adequate to characterize the leaky field
component.

Finally, there is a wave which travels along the interface, continuously radiating energy into
both the layer and the half-space. Usually the contribution from this wave is small; however, if a
mode is near cutoff, this lateral wave can be excited strongly. Unfortunately, the asymptotic form
for this wave field, equation (79), is not valid when a mode is near cutoff and a numerical
evaluation of the Pekeris branch line integral must be performed.
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Tolstoy 23 has shown that the present model is adequate to predict acoustic propagation in
shallow ocean water for both sinusoidal sources and impulsive sources (explosives). While the fluid
layer over a fluid half-space Is a simplistic model, the concepts developed in this paper can be
readily extended to more complicated problems. Addition of fluid layers increases the number of
simultaneous equations in the determination of the constants of the depth equations (19). Variation
of the sound speed with depth changes the form of thene depth equations and requires the use of
special functions or numerical integration; however, the solution still reduces to a residue sum plus a
branch line integral. Introduction of elastic layers leads to another set of modes and another branch
line integral describing the shear wave field. While the solution becomes difficult to implement, the
concepts remain unchanged.

Not only is the present technique applicable to the solution of acoustic propagation in fluids
and solids. it can be adopted in other field problems. Vibration of submerged plates and
electromagnetic wave propagation have already been mentioned. The present problem is also
analogous to the problem of nucleus stability in quantum mechanics. In fact, the differential
equation, equation (9), is identical in form to the one-dimensional Schroedinger's equation 24. By
analogy, the trapped modes correspond to the discrete bound states of particles "orbiting" the
nucleus, and the leaky modes correspond to radioactive states in which particles escape from the
nucleus.
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APPENDIX A

CYLINDRICAL WAVE EXPANSION OF A SPHERICAL WAVE
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APPENDIX A

The expansion of a spherical wave in terms of cylindrical waves can be used to transform a
point radiator into a boundary condition. A result of this transformation is that the complications
associated with the solution of a non-homogeneous differential equation are avoided.

From the separation of variables solution to the wave equation, the elementary solution, equation
(13), to the wave equation in axial symmetry was found to be,

J,= J (-yr) ei(WOt -Oz) (A-1)

where

4= velocity potential

= horizontal wave number

vertical wave number = jk2 72

The superposition integral can be written with the horizontal wave number as a parameter. Thus,after dropping the time dependence of the potential function, we have,

00

f= J A(-y) Jo(,yr) elig3z dy (A-2)

0

where

A = arbitrary function of -y

at = time-independent potential

Recall that a spherical wave can be expressed as the general solution of the wave equation
through the following relation,

S f(wt - kR)

where

f = arbitrary function describing the waveform

R, radial distance r2 +

Following Stratton 15 the wave function corresponding to a harmonic source i cylindrical coor-
dinates may be written as,I = i(wt - kR) (A-3)

After removing the time factor, the wave function in equation (A-3) along the plane z = 0 assumes
the form,

e-ikr
(b• r, o) = k (A-4)

r

A-2
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Since equation (A-2) represents the general time independent solution to the wave equation, we
must determine the function A(-y) that reduces the general solution to the spherical wave solution.
By substituting z - 0 into equation (A-2) and setting the result equal to equation (A-4), we con-
clude that the equation defining the function A(y,) is,

e-ikr

J A(y) Jol(7 r) d-y (A-5)

0

In order to solve this integral equation, we use the Hankel transform, which is characterized

by the following transform pair25

00

g(,Y) = f(r) Joo(r) r dr

0
(A-6)

00

f(r) = g('y) Jol(yr' t d-y

0

Replacing A(-,) by yg(y) in equation (A-5), we have,

e-kr -f f g(y) Jo(0 Ur) -y dy (A-7)I 0
Using the first of equations (A-6), we can reduce this last equation to,

00

g(Y) f e-ikr Jol(yr) dr

0

Moreover, the Bessel function Jo can be replaced by its integral expansion to yield 9 ,

7r 00

g 1 f f e-ir(k-cOs 0) drdO (A-8)

-it 0

The integration over r is elementary provided that k possesses a negative imaginary part. If we
make th;s imaginary part arbitrarily small, we obtain,

1 / dO (A.9)gi-Y) I- 27 f k -7cos 0

A-3
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By introducing the transformation u - eiO into equation (A-9), the integral may be expressed as
a contour integration-in the complex plane,

I fu du

g(7) -2 _J2uk/-, +1
C ;

where C, the contour - the unit circle.

To evaluate the integral using the residue theorem, we must first determine the roots of the de-
nominator which are given by,

u2 - 2uk/-f,+ 1= (u - u1)(u -u2)

(A-10)
= u2 + u(ul+u 2 ) + uiu 2

Comparing the constant terms of this last result, we find,

UlU2 = 1

It is apparent from this result that one root must lie inside the unit circle and the other must lie
outside. Since only the root inside the unit circle contributes to the contour integral, we must
examine the magnitude of the roots. Therefore, solving the quadratic equation, (A-10) for u,

U=

Further, the residue at the smaller root is equal to,

1 _ -?
res u- u 2 _ k2 _ _

Finally, the integral in eq'dtion (A-9) can be written as,

g(Y) (A-11)

Introducing this last result into equation (A-7), we find that on the plane z 0,

00

e-ikr foy J0 (7 r)

od
--r- f d

0 i,/k2 -_y2

Combining equations (A-2), (A-5), and this last result, we find that the velocity potential of a
spherical wave is,

00 Jo(yr) et iLz
i•~ fd~ (A-12)

0

A-4K
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APPENDIX B

PROOF OF THE VALIDITY OF THE
RESIDUE SUM/BRANCH LINE INTEGRAL SOLUTION

B-1
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APPENDIX B

In the process of deriving the solution to the field equation, equation (24), in terms of a sum
of residues and a branch line integral, equation (45), we assumed that the integrals over contours
CI, C2, C3 and C4, shown in figurm 2, vanish as the radius of these arcs becomes infinite. Indeed,
we shall show that ihno cnrn.iusion is valid provided the source-to-observation-point range is not
zero; that is, provided the observation point is neither directly above nor directly below the source.

Employing equation (31), we can write the required integrals in the following form,

f - f HoW (2yr) yG(01, 32 )dy (B-1)

C12 34  C12 3 4

where C12 3 4 = any of the contours, C1, C2 , C3, C4 shown in figure 2.

For very large values of the horizontal wave number y, equations (18) reduce, approximately to,

(31,22 ... 2

or,

01,2

Observe that the sign of the above expression depends on the location of the contour with respect
to the branch cuts shown in figure 2.

From the correspondence between the 1 and -y-planes illustrated in figure 3, we notice that:

a) along C1 and C2 ,

91,2 = iy (B-2)

b) along C3 ,

01 i'Y (B-3)

932= -i7

c) along C4,

91,2 = -i7y (B-4)

Also, along these circular arc contours, y is given by,

,y = ReiO (B-5)

where

R -- oo

q= angular position along contour.

B-2
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As a consequence of this last result, the differential element, dY, can be written as,

d-, = iReo do (B-6)

Further, the Hankel function in the integrand of equation (B-1) can be expressed in terms of the
asymptotic approximation, equation (29). Using equation (8-5) for the wave number, we can then
write,

,y Ho(2) (,yr) i_• (ReiO)½ e *i. e-i~i (B-7)

In order to proceed with the analysis, we must consider each contour separately. Along the
contour C1, the angle 0 ranges from -ir to -ir/2 and the vertical wave numbers, P1 and 32, are given
by equation (B-2). Substituting these values for 01 and (32 into the equation defining G(0I, (2),
equation (30), and replacing -f with the right side of equation (B-5), we can show that,

G(( 1, (32) = _1 (ReiO)-' e -R(z-d) cOs 0 e iR(z-d) sin 0

Observe that terms that decrease exponentially as R increases to infinity have been deleted from
this last equation. After this last result is combined with equations (B-7) and (B-6), the contour in
tegral given by equation (B-1) may be written,

- T/21/

-ie 2 rr f (eiO)½ e R [r sin 0 + (z-d) cos 0]

C1-r

Se-iR [r cos - (z-d) sin 0] )

Consequently,
S-7r/2

If Rr -d) cosF] do (B-8)

Over the range of 0 given by the limits of integration, the following inequalities are valid,

e -rR . + rR sine 0

e e2R(zd)( +1) eR(zd) cos

Hence, equation (B-8) can be reduced to the following form,

r r/
f < R e ~ -d-2r) 213 - ("d-r

J 27rr e f e do
C1  -7T

B-3
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Or,

ff FerR - -R(z-d)] (8-9)(z-d-r) Bl

L_

Observe that the right side of equation (B-9) vanishes as R becomes infinite. Thus, the integral
along the contour C1 can be neglected unconditionally.

Since G(Pi, P2) is an even function of P2 (A consequence of equation (30)) ano the sign of
P1 remains positive along C2 and C3 (see equations (B-2) and (8-3)), equation (8-8) can be ap-
plied along these contours to prove that,

I. *0

f / . R [r sin + (z-d) COS do (B-10)

C 7r2,3  -V/2

Introducing a change of variables, we write,

x = Rcoso
xo = R cos 0o
dx = -Rsinodo

where

x = distance along the real 7 axis
xo = distance from origin to either 72 (for C2 ) or 71 (for C3 )
0o = upper limit of 0 for appropriate contour.

Thts, equation (B-10) becomes,

f Rf fA) dx
C f R erR sin exlz'd) Rsine (B-11)

C2,3  0

In addition, the following inequalities are valid over the range of x indicated by the limits oF in-
tegration,

dx > dx
R sin 0o R sin 0

rR sin 0o rR sine > er~i~

Hence, equation (B-1 1) can be reduced to the folloiwng form,

x0
f < erR sin f e x(z-d) dx

C'2 ,3  V sin 0( 0

B-4
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Integrating the above and observing that, as R becomes infinite 00 approaches -w/2, we write,

f e-r R [exo(z-d) ](-)
C2,3  (z-d) VP/2rk-

We can show from this last result that the integrals over contours C2 and C3 vanish provided the
radius r is not zero.

According to equation 1B-4), the sign of 01 is negative along C4 ; therefore, the expression
for G(631 , P2), i.e., equation (30), has the following form,

G(031, 02) - 1 (Rei)- e -R(z-d) cos 0 • -iR(z-d) sin

Substituting this last result and equations (B-6) and (B.7) into equation (B-1), we can write the
contour integral along C4 as,

f -ie 4" R (eiO) 1e R [r sin - (z-d) cos 0]
-wr1

C4 -7/

.e-iR[rcoso+ (z-d) sin 0] do

Therefore,

0

AFIR
J < 2 r J eR[rsin¢-(z-d)cos¢] do (B-13)

fC41 r I/

Within the range of € given by the above limits of integration, the following inequalities are valid,

e 2rR._ erR sin
if

-R(z-d) 2o +
e I e-Rlz'd)coso

Hence, equation (B-13) reduces to the form,

e - R(z-d) e•do

C4 -Ir/2

Integrating, we see that,

Se-R 
(zBd ) - e -rR '

: B-5
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This last result vanishes unconditionally as R increases to infinity. Thus, we have shown that all
of the circular arc contours, C 1, C2, C3 and C4, in figure 2 contribute nothing to the field provided
that the radius, r, is not zero.

B -6
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APPENDIX C

LOCATION OF THE EIGENVALUES
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APPENDIX C

The eigenvalues corresponding to the normal modes of the layered half-space are the values
of y which satisfy equation (33),

31 cos/31H + ibP2 sin A1 H - 0 (C-1)

where

01,2  c .

Solutions to equation (C-1) are possible, for real -1, if

7 < <-2 c T

Introducing these values of - into equation (C-1), we discover that P1 is real and 02 is imaginary,
Under these conditions, the characteristic equation (C-1) becomes,

F Tn2 
- -12- -b tan - 2 H (C-2)

These modes are trapped modes with phase velocities between c1 and c2 and real eigenvalues,

yn'

In order to locate the complex roots of equation (C-1), we will transform the variables as
follows3 ,

V1 ,2
2 = 201,22 = 72._2 (C-3)c12 2

Selecting the sign of the square root by the same argument used in deriving equation (21), we can

write,

-ivl,2 = 31,2 (C-4)

Substituting this last result into equation (C-1), we find that,

v1 + bP 2 tanhv 1 H = 0 (C-5)

If v is complex, equation (C-5) can be separated into real and imaginary parts,

vlr-vlitanhvlrHtan vliH + bv2 rtanhvlrH-bv2itanpliH = 0

Vii + vlrtanhvlrHtanvliH + bv 2 rtanpliH+bv2itanhvlrH = 0

C-2
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where

v1r = raal part of v1

vli = imaginary part of P 1

P2r = real'part of v 2

"12i = imaginary part of P2

Eliminating tan vliH from the above tw(, equations, so that we may eliminate the periodic change
in sign, we may write,

FVir + b2it2rtant, VrH H bLb2i + PiitanhzP1rH.h
Vii + bv2itanhP1rH Lbv2r + lrtafhvIrH(C-6)

In each region of the y-plane shown in figure 3, the signs of the components of P1 and v2 possess
deTlnite values. Using this figure and equation (C-1), the signs can be determined and introduced
into equation (C-6). As a consequence, we find that complex eigenvalues can not exist in any region
of the y-plane except region I. All the other combinations of sign lead to a positive quantity on one
side of equation (C-6) and a negative quantity on the other.

In view of this analysis, we see that the complex eigenvalues are located in the fourth quad-
rant of the - plane to the left of the branch cut from w/c2. Therefore, the EJP cut possesses no
complex eigenvalues since region I does not exist for this cut.

To show that an infinite number of complex eigenvalues exist for the Pekeris cut, consider
the location of eigenvalues for large y. In this case, equation (C-3) can be written,

V1,2 L' 7

Substituting this last result into equation (C-5). we discover that,

1 sinh 2 7rH + i sin 2yiH

b- tanh71H = cosh2'YrH + cos2-yiH (C-7)

where

-Yr = real part of -y

yi = imaginary part of -y

Since b is real,

sin 2-yiH = 0

This last result is equivalent to the statement,

it n= r (C-8)

where n ia=-ge integer.

C-3
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Introducing this last equation into equation (C-7), we can write,

P2 sinh 2 rH
Pl cos h 2 YrH ± 1

By solving the above equation for Wr, we discover that the real part of these eigenvalues asymp-
totically approaches the value,

1 RnI b+ 1 C92H= n f (C-9)

Thus, equations (C-9) and (C-8) describe the positions of these complex eigenvalues for large Y.
In particular, equation (C-8) demonstrates that there are an infinite number of these eigenvalues.

C-4
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APPEND IX L)

PLANE~ WAVE EXPANSION OF A SPHERICAL WAVE
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APPENDIX D

Since +he behavior of plane waves at an interface between two media is well known 14 , we will
examine the expansion of a spherical wave in terms of plane waves. The derivation given below
follows Brekhovskikh 16 ; however, in order to facilitate comparisons with material in this paper,
the results are presented in wave number space rather than in terms of the complex angle of in-
cidence.

The elementary harmonic plane wave function is given by,

= ei(O~t- K( w) (D-1).

where

K, vector wave number = yxi + 3,yj + Ok
R, range vector = xi + yj + zk

x, y, z = observation point coordinates
7 x, Yy, • = plane wave number coordinates

In accordance with the work of Appendix A, the spherical wave can be written as a superposition
of these elementary functions along z =0, thus,

00

eikr = A(,yx, -yy) e i(Txx + ^fy Y) dyxd-,y (D-2)r fi
-00

This last result is a two-dimensional Fourier transform; therefore, the inverse transform will yield 2 5 ,

001 rr e-ir i•X+3yy
A(•'y, -Yy) = 42 r e ixx + -yY) dxdy (D-3)

-- 00

This integral can be converted to polar coordinates by employing the following transformation,

x = rcosO

y = r sin (

'x = 7' cos (
yy = -y sin k

whereI = horizontal wave number

-angular coordinate of y shown in figure 5.

D-2
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Furthermore, the element of area in wne transformed space is -drdV. Substituition of equations (D-4)
in equation (D-3) charnges the integra! form to,

2v
A~y~, -~ ~2 ff eir(k - cos (0 -c) ~;

This last int.,,ral is ident;cal in form with equaion (A-8) so that the eviluation procedure discussed
in Appendix A may be applied. Thus, we find,

A(y, Ify) 2 ...-. 2i . -. (D-5)

Substituting this value of A into equation (D-2), we have,

e-ikr -i f "i(7xx + 7y Y)-J J d -fx d-yy
r -T, 2 d--f 2

Writing this last result in terms of the wave number vector and extending the investigation to in-
clude the z direction, we may represent the valocity potential as,

eiw~t e-iK (R• f ~j D6
=-- J i dYx dy/y (D-6)

where 3, verticail w3ve number =Vfk -- ,y2 as illustrated in figure 5.

T,: s list expression is the expansion of a spJherical wave in terms of plane waves.

Observe from the geometry of figure 5 and the fact that k is a constant, that, as yx and Yy
assume progressively larger values, j becomes imaginary. Wades having imaginary wave numbers are
called inhomogeneous waves. When we consider the exponential part of these waves (from equation
(D-1)), their nature becomes evident.

ei(t - -YxX-YyY + OJz) = ei(wt- YxX-YYY) e -Z (z >O0)

where

i = positive real number
•=ia.

Hence, this wave propagates horizontally and is damped in an exponential manner in both direc-

tions vertically away from the plane, z = 0.

Finally, equation (D-6) is equivalent to the expansion of a spherical wave in terms of cylin-
drical waves as given by equation (A-12). This correspondence can be demonstrated by applying
the transformation defined by equations (D-4) to equation (D-6). As yx and -ty are altered from
_z .c o, ,. assuines values from zero to infinity and 0 varies from zero to 2fr. In addition, the

D-3
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differential element equivalent to dfxd7y is yfd-ydo. If we apply this transformation to equation

(D-6), we can write,

27r

- ieit eei-sin sin 8 + cos 1 cos 08) ed d

27r J J
0 0

? ,0 0

The quantity in the brackets of the above integral is equivalent to an integral form of the Bessel

function 9 , Jo (-fr), therefore,

= eiwt f Jo (yr)ee-+(D-7)

This last result is identical with equation (A-12).

D-4
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I.

APPENDIX E

BOUNDARY VALUE PROBLEM FOR TWO FLUID HALF-SPACES
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APPENDIX E

Determination of the field induced in a fluid by a point source L•bove a fluid half-space re-
quires a procedure analogous to the technique employed in the body of this paper. Figure 4 ilius-
trates the physical problem in which the lower half-space is a homogeneous fluid of sound speed,
c2 , and density, P2. Depth functions corresponding to equations (19) can bre written.

Z1 C1 Ce-il (d < z < )"

Z2 = C2 e-i1z + C3 ei'1 z (0 < z < d) (E-1)

Z3 = C4 ei2 (z < 0)

Boundary conditions applicable to this problem are: (a) continuity of pressure at z 0 0; (b)
continuity of particle velocity at z = 0; (c) continuity of pressure at the source depth; and (d) a
discontinuity of particle velocity at the source depth representing the point source. In mathematical
terms, these conditions are,

(a) P 1 Z2  P 1 Z3  at z =0

(b) dZ 2  dZ3
dz atz=0

(E-2)

(c) Z 1  Z2 at z = d

(d) dz dZl
( dz -- dz - 27y at z = d

From these conditions, we can determine the constants in equations (E-l) ard write the depth
function in the region below the source and above the interface,

i2 (z+d) F01_ -h132  e-i~ l (d-0z)Z2 i•1 I e-p -- b9 + e-ol(0-z < z < d) (E-3)

where b, density ratio = Pl/P2

Finally, by employing a superpositioi) similar to that of equation (15), the solution for the velocity
potential is,

fo e-i/1 (d -Z)

ý2 eiwt Jo(tyr) ed-

0

(E-4)

+eiwt j Jo(-r) + i
0

E-2 •
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APPENDIX F

METHOD OF STEEPEST DESCEN r

F-1
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APPENDIX F

The method of steepest descent, or saddle point method, is a techiiique.for approximating
complex contour integrais. If the integrand satisfies certain conditions, a region in the complex
plane can be located that contributes most of the integral's value. By considering the poles and
branches of the function, the original contour can be deformed so that it passes through this region.
Furthermore, the path is selected so that the function decreases as quickly as possible on each side
of this region. By requiring that a parameter in the integrand be large, the descent in either di-
rection becomes steep and only the behavior ot the function near a single point need be considered.

Hence, the problem is one of locating the saddle point where the peak value of the integrand
occurs, finding the path of steepest descent away from the saddle point, deforming the original
contour into the descant path and writing a series approximation for the integral. 3 ,16 ,26 ,2 7 This
appendix foilows the method of Brekhovskikh 16 although a more direct technique for obtaining
the asymptotic series is introduced.

The method of steepest descent may be applied to integrals of the form,

I G (ct) ePf(s) ds (F-1)
c

where

c = contour in the a-plane
G, f - analytic functions

I - complex integral
1 = independent complex variable
p = positive real number

We consider the evaluation of this integral for large values of p.

Generally, f is a complex function which can be written as the sum of a real and an imaginary
part,

f(a) = fl(a) + if 2 (a)

Furthermore,

ePf = ePfl e'Pf2 (F-2)

Thus, fl controls the magnitude of the exponential while f2 defines its phase. We must find a
point, ao, at which the function fl is maximum and determine a contour for which fl decreases
most rapidly on either side of ao.

In order to locate co a,.tl the path of descant, we must consider the properties of f (a) as an
analytic function of ",. -;rnplex variable a. Since the function is analytic, the Cauchy-Riernann
conditions2 8 apply,

F-2

IF- - - -



NADC-81284-30

afx ay2
(F-3)

ay 7 a-
A stationary point of f1 is obtained if,

aft atf 0
a)x ay

Equations (F-3) imply that the above conditions are also valid for the function f2. If we assume
that fI is a maximum with respect to x, then,

a2 f1  a2 f2

ax2  axay

Differentiating the second of equations (F-3) with respect to y, we find,

a2 f1 a2f1

ay2 axay

This last result demonstrates that if fl is a maximum with respect to x, then, it is a minimum with
respect to y.

Hence, we concluds that for analytic functions a stationary point will not correspond to an
absolute maximum or minimum of the function. If the function fl (x, y) possesses a maximum in
one direction, we obtain a minimum at 900 to this direction. For this reason, a stationary point
of an analytic function is called a saddle point after the saddle surface to which it corresponds.
From the saddle, we find peaks in two opposite directions and valleys in the other two perpendicu-
lar directions. The desired path of integration passes from the saddle point through these valleys,
one on each side of the saddle. This path concentrates the significant part of the integration in the
shortest possible interval.

We recall that the direction of most rapid change of a function is given by the gradient of the
function,

7f afl i + fl

Further, the slope of this vector in the x, y-plane is qiven by,

dy _ afl/ay
CF- - af 1/-5x

Accord'ng to equation (F-3), we may write this last result as,

dy _ 3f2/(ýxdx a f (F-4)

F-3
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For the path of constant f2 , we have,

df2  af2 dx + d3f2 y 0ax ay
This last relation' is identical to equation (F.4). In other words, the direction of most rapid change
of f1 corresponds to the direction of constant f2. Since f2 determines the phase of the.exponential
in equation (F-2), the path of steepest descent coincides with the path of constant phase.

Thus, the saddle point is determined by the condition,

df 0 (F-5)
do

Furthermore, the required descent path must oe a path over which the imaginary part of f remains
constant and the real part decreases on both sides of the saddle point. By introducing an, as yet,
undetermined parameter, we can describe the behavior of f along the descent path as follows,

f(CO - f()- s2 (_ < s < o)(F-6)

where s - real-valued parameter.

If we can determine the path in the ot-plane along which equation (F-6) is true, we have located
the path of steepest descent.

By employing equation (F-6), we can write equation (F-1) in the following form,

I - epf(°0 ) fG(ct)e-Ps2 do (F-7)

c

We shall alter the variable of integration to s by introducing a function t(s) which is defined by,

V(s)ds - G(ct)dcx (F-8)

Introducing equation (F-8) into equation (F-7), we have,

I = epf(C4) f V(s) e-ps2 ds (F-9)
~00

Since p is large, only small values of s contribute significantly to the integral. Therefore, we can
expand t in powers of s and retain only the first few terms of such an expansion. In this manner,
equation (F.9) becomes,

I- ePf(%°) V(o) e-Ps 2 ds + "(oa) s2 e-Ps2 ds

F-4
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Note that terms with odd powers of s when integrated yield zero since the integration is between
limits symmetric around zero. The resulting integralu have been tabulated in the literature so that
the approximation to the original integral, equation (F-1), is,

I ea('O) 4 (1o) + WP- '(0) (F-10)

To complete the analysis, we must find an expression for • in terms of known functions.
From equation (F-6), we may write,

df Vf--2 ds

Combining this last result with equation (F-8), we find,

V -2sG (F-11)

Each of the functions on the right side of equation (F-1 1) can be expanded in a Taylor series,
thus,

G(x) W G(a) + x G'(o) +--G"(o) +,..thus, (F-i2)

x x 3f"(of'(x) - xf"(o) + ff"(o) +-2 " + "'"

where x = a - ot

From equation (F-6), we conclude that,

s2 X2-• f"l(o) - 3 ff'"(o) x-

Introducing this last expression and equations (F-12) into equation (F-11), we have.

• ~ ~1 , , x , , x 2 f , ,
-2 1 'fI -XfD IT- x

2 G'+ T G' (F-13)•(s) f,,+._ f,, +-• f,,--

Hence, the first term of equation (F-10) is given by,
!-2

(0) - f #-"ao) G (c°) (F-14)

Note that in this last evaluation, when x s = 0, then, a = co. Differentiating equation (F-13)
twice with respect to s, we obtain the second term of equation (F-10), i.e.,

[f_______G 5(f'...) 2  f"" "](F15"(o) = 2 ý(o) T _'2 .. . + (F-15)
f~o i 2 13 12(f") 3 +4(f") 2  

-(-5

Observe that all the quantities in equation (F-15) must be evaluated at a 0(o.

F-5/F-6
i
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